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Abstract. A one-dimensional quantum mechanical model for nuclear-resonant scattering of
gamma radiation from matter is developed assuming the source radiation is gamma decay. A
closed-form, finite-sum solution for the radiated intensity is obtained by restricting the calculation
to coherent forward scattering. The solution provides a unified microscopic picture of nuclear-
resonant scattering processes in which the radiation undergoes sequential scattering from one
nucleus to another before reaching the detector. For recoil-free processes the various ‘paths’ to
the detector contribute coherently. The solution for this case gives results identical to the classical
optical model. The one-dimensional model shows that the ‘speed-up’ and ‘dynamical beating’
effects are primarily a consequence of the fact that the single-nuclear scattering processes are
180◦ out of phase with the incident radiation while the double-nuclear-scattering processes are
in phase with the incident radiation. All multiple-scattering paths are, and must be, included.
The model can treat the incoherent processes, i.e. processes involving gamma emission with
recoil or conversion-electron emission. The results show that a correction may be needed when
analysing time-differential M̈ossbauer spectroscopic data due to incoherent processes that occur
in the absorber.

1. Introduction

The Mössbauer effect [l, 2] is a consequence of the recoil-free emission and/or recoil-free
absorption of gamma radiation that can happen in solids. The experimental technique
relevant for this paper is time-differential M̈ossbauer spectroscopy (TDMS) [3]. The
resulting ‘lifetime curve’ does not, in general, show the expected exponential behaviour.
This effect has been called ‘time filtering’. Hamermesh [3] analysed the recoil-free process
using a classical optical model. (The classical optical model has also been applied to the
transmission of radiation through an electronic resonant medium [4].) Subsequently Harris
[5], using methods developed by Heitler [6], was able to show that the quantum mechanical
treatment gives the same result. In this paper, using the same approach, a one-dimensional
model is taken to represent the absorber and a different closed-form solution is found.

The studies by Hamermesh and Harris considered the recoil-free coherent nuclear
radiation. Until recently there has been no experimental TDMS study of the incoherent
channels. In such an experiment [7] the conversion electrons or the resulting x-rays,
i.e. the inelastic channel, are detected instead of the second gamma ray. The results
presented here show that the incoherent channel also exhibits unusual time-dependent
effects. (In experiments using synchrotron radiation, the incoherent channel shows up more
dramatically: see below.)

0953-8984/97/418749+17$19.50c© 1997 IOP Publishing Ltd 8749
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In recent years there has been a renewed interest in time-domain nuclear-resonant
scattering because of the availability of synchrotron-radiation facilities. A recent review [8]
of this exciting field contains a summary of experimental and theoretical results. The one-
dimensional model developed here doesnot apply directly to the synchrotron-radiation case.
However, the model has been applied to the case of synchrotron radiation [9]. Therefore
only a few remarks will be made here regarding synchrotron radiation.

The problem addressed is the one in which a radioactive source nucleus emits gamma
radiation and this radiation interacts with a polycrystalline absorber containing resonant
nuclei which are initially in the ground state. The time at which the source nucleus is in
its first excited state is determined by a precursor gamma ray. The one-dimensional model
predicts the shape of the lifetime curve, i.e. the time-dependent intensity of radiation from
that state, when the radiation passes through resonant matter.

Section 2 gives a brief review of the quantum mechanical approach used to solve
this problem. The model for nuclear-resonant coherent forward scattering is developed in
section 3. In section 4 the connection between the model and its application to real physical
situations is established. The model applied to the recoil-free processes gives an answer
identical to that obtained using the classical optical model. One simply needs to establish the
relationship betweenN , the only parameter in the model, representing the effective number
of resonant nuclei, and the usual nuclear-resonant thickness parameter of the sample which
is needed in the classical optical theory.

The details of the solution are put in an appendix. The result for the recoil-free processes
when the source and absorber are in resonance is given in equation (12) and in the appendix
equation (A22). The result when the source and absorber are not in resonance can be found
by using (A17)–(A21). These equations are more complicated and will not be discussed
further. The results for the processes with recoil are given in (13)–(15) and (A28)–(A34),
while those for the inelastic channel are found in (16), (17) and (A35)–(A39).

2. Review of the quantum mechanical approach

The general method used in this paper is discussed by Harris [5] and Heitler [6]. The method
applies quantum mechanical time-dependent perturbation theory in the frequency domain
to obtain a set of coupled linear equations. The Hamiltonian of the system is divided into
two parts;H0 corresponding, in this case, to the nuclear states and the free radiation field,
taken as plane waves, andH which is responsible for making transitions between the states
|φp〉 of H0 by allowing the nuclei to absorb and emit radiation. In the standard approach
the true state of the system|ψ(t)〉 can be expressed as

|ψ(t)〉 =
∑
p

ap(t) e−i(Ept/h̄)|φp(0)〉 (1)

where|φp(0)〉 is an eigenstate ofH0. Solving the Schr̈odinger equation in the usual way one
arrives at a set of coupled differential equations relating the expansion coefficientsap(t).

ih̄
dap
dt
=
∑
m

am(t) ei(ωp−ωm)t 〈φp(0)|H |φm(0)〉 + ih̄δplδ(t) (2)

The Kronecker delta and the delta function on the right-hand side in (2) are needed to denote
that at timet = 0 the system is in the state wherep = l (i.e. for our case only the source
nucleus is excited).

Now introducing the Fourier transform

ap(t) = − 1

2π i

∫ ∞
−∞

dωAp(ω) ei(ωp−ω)t (3)
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into (2) and writingδ(t) in an integral representation gives

(ω − ωp)Ap(ω) =
∑
m

Am(ω)
〈φp(0)|H |φm(0)〉

h̄
+ δpl. (4)

However, in order thatap(t) = 0 for all p whent < 0, Ap(ω) must have a pole only in the
lower half of the complex plane. To ensure this (4) is re-written

(ω − ωp + iε)Ap(ω) =
∑
m

Am(ω)
〈φp(0)|H |φm(0)〉

h̄
+ δpl. (5)

3. The N-nucleus scattering problem

This formalism can be applied to study the problem where att = 0 there is an excited source
nucleus, andN resonant ‘absorber’ nuclei, in the ground state, located between the source
and the detector. This problem has a closed-form solution if one restricts the calculation to
forward scattering. The solution has a simple form and a clear physical interpretation.

For this case there are five amplitudes:A(ω), the source nucleus located at the origin
is excited (energy ¯hω0), all absorber nuclei are in the ground state, and no photons or
conversion electrons are present;Bk(ω), all nuclei are in the ground state and a photon is
present of wave numberk and energy ¯hωk; Cm(ω), only the absorber nucleus located at
x = xm is excited (energy ¯hω′0) and no photons or conversion electrons are present;Dp(ω),
a conversion electron from the source nucleus is present having momentump and all nuclei
are in the ground state;Emp(ω), a conversion electron is present from the absorber nucleus
located atx = xm, and all nuclei are in the ground state. I neglect the photon polarization
and the electron spin which would only obscure the relatively simple form of the final
solution. Assuming that at timet = 0 the source nucleus is excited, and substituting these
amplitudes into (5), gives the following set of coupled linear equations:

(ω − ω0+ iε)A(ω) = 1+
∑
k

Bk(ω)Hk

h̄
+
∑
p

Dp(ω)Hp

h̄
(6)

(ω − ωk + iε)Bk(ω) = A(ω)H ∗k
h̄

+
∑
m

Cm(ω)H
∗
k

h̄
e−ikxm (7)

(ω − ω′0+ iε)Cm(ω) =
∑
k

Bk(ω)Hk

h̄
eikxm +

∑
p

Emp(ω)Hp

h̄
ei(p/h̄)xm (8)

(ω − ωp + iε)Dp(ω) =
A(ω)H ∗p

h̄
(9)

(ω − ωp + iε)Emp(ω) =
Cm(ω)H

∗
p

h̄
e−i(p/h̄)xm (10)

whereHk andH ∗k are the matrix elements corresponding to absorption and emission of a
photon, respectively. AlsoHp andH ∗p are the matrix elements corresponding to absorption
and emission of a conversion electron, respectively.

The meaning of these equations can be made clear by considering, for example, (6)
and (7). Equation (6) governs the amplitude for finding the source nucleus excited,A(ω).
Since this is the case att = 0, that accounts for the ‘1’ on the right-hand side. The source
can also reach the excited state, when in the ground state, by absorbing a photon that is
present. This is the meaning of the second term on the right-hand side. Similarly, when
the source nucleus is in the ground state, it can be excited by absorbing its own conversion
electron. Since the source nucleus is at the origin of our coordinates, there are no spatial
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phase factors needed. On the other hand consider (7). This is the equation describing the
situation in which all nuclei are in the ground state and there is only a photon present,
Bk(ω). How can this happen? The source can emit a photon; that is the meaning of the
first term on the right-hand side. Also one absorber nucleus, located atxm, can emit a
photon. Now I must put in the phase factor representing the fact that this photon appears at
x = xm. Furthermore one must allow any other absorber nucleus to do the same thing: the
summation over all absorber nuclei is needed. The other three equations can be understood
in the same way. The solution to the problem is obtained by solving this set of coupled
linear equations. Some of the mathematical details are given in the appendix.

3.1. Summary of the solution

The wave function describing the transmitted intensity, when the source and absorber nuclei
are in exact resonance, is expressed by (A22) from the appendix.

ψr(t
′) = ψsource

r (t ′)
[

1+
N∑
n=1

(
N

n

)(
−0rt

′

2h̄

)n 1

n!

]
(11)

whereψsource
r (t ′) is due to the source alone,0r is the radiative width, andt ′ is the time

measured from the time of formation of the first excited nuclear level in the source.
Equation (11) contains all the amplitudes contributing to the forward scattering. This
solution can be expressed in the following way by identifying the various amplitudes.
There is an amplitude for the source radiation to reach the detector without interacting
with any absorber nuclei: the first term on the right-hand side. There is another amplitude
for the ‘path’ in which the source radiation is absorbed and re-emitted by one absorber
nucleus before reaching the detector. This single-scattering process I term the ‘one-hop’
process. This amplitude contributesN times since there areN absorber nuclei: the first
term involving the summation sign. There is another amplitude or ‘path’ where the source
radiation makes two ‘hops’ (double scattering) on absorber nuclei before reaching the
detector. This amplitude can occur according to the number of ways two objects can
be selected fromN objects, i.e., the binomial coefficientN over 2: the second term under
the summation sign. The other ‘paths’ involving more hops (multiple scattering) are of a
similar nature. It is important to take note that for each hop (single scattering) there is an
180◦ phase shift, the minus sign, and a probability given by the radiative width0r/2. Next
consider the amplitudes for different processes and how each contributes to the total.

3.1.1. Recoil-free processes.The source emits recoil-free radiation and, when the absorber
nuclei do the same, it is impossible to distinguish which ‘path’ was taken for each photon
that reaches the detector. Therefore all paths must be added coherently. All amplitudes must
be added before taking the absolute value squared to obtain the time-dependent intensity
of gamma radiation reaching the detector. The only modification needed in adapting (11)
to this case is to realize that the probability for gamma-ray absorption or emission is not
given by the radiative width0r alone. Now the radiative width must be multiplied by the
recoil-free fraction (f ). Thus the time-dependent intensity of radiation reaching the detector
when the source nucleus and absorber nuclei are in resonance is given by modifying (11)
((A27)) accordingly.

If r (t
′) = f0r

2h̄
e−(0/h̄)t

′
[

1+
N∑
n=1

(
N

n

)(−f0rt ′
2h̄

)n 1

n!

]2

(12)
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where0 is the total decay width. Using (12) one can see ‘speed-up’ and ‘dynamical beat’
effects familiar [3, 8] from experimental results and classical optical model calculations.
It appears that the source nucleus is decaying more rapidly than normal, i.e. the speed-up
effect. Also the time-dependent intensity using thick absorbers shows local maxima at times
different from zero, i.e. dynamical beats.

The one-dimensional model results for the recoil-free processes are identical to those
obtained using the classical optical model whenN is correlated with the nuclear-resonant
thickness parameterβ. The thickness parameterβ is equal toN0f σ0d, whereN0 is the
number of resonant nuclei per cubic centimetre,f is the recoil-free fraction,σ0 is the
maximum cross section evaluated on resonance, andd is the thickness of the sample. This
agreement is shown in figures 1 and 2.

Figure 1. A comparison of the one-dimensional model with the classical optical model assuming
recoil-free processes for57Fe. The one-dimensional model withN = 50 agrees with the classical
optical model forβ = 8. The result forβ = 7 does not agree. The result forβ = 9 does not
agree either, but this is not shown to keep the figure legible. Notice the speed-up effect and
dynamical beat.

In the one-dimensional model the origin of the speed-up and the dynamical beat effects
can be seen by looking at the phase of each term in (12). The factors inside the square
brackets of (12) are the terms to be studied. Each casen corresponds to ann-hop
path. The total number of differentn-hop processes is determined by the numberN ,
the effective ‘thickness’ of the ‘absorber’. As an example consider an ‘absorber’ whose
resonant thickness can be correlated withN = 50, as shown in figure 1. In this case we
will have 50 one-hop processes, 1225 two-hop processes,. . . up to and including one 50-
hop process where all absorber nuclei participate. A convenient way to show the various
contributions is to plot each individual term in the sum, i.e. the result for eachn multiplied,
for convenience, by the exponential function. Figure 3 shows the no-hop, the one-hop, and
the two-hop amplitudes each multiplied by the exponential factor for the case when the
absorber ‘contains’N = 50 effective nuclei. Notice that the one-hop amplitude is 180◦ out
of phase with respect to the no-hop and the two-hop amplitudes. When these amplitudes
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Figure 2. A comparison of the one-dimensional model with the classical optical model assuming
recoil-free processes for57Fe. The one-dimensional model withN = 100 agrees with the
classical optical model forβ = 16. The result forβ = 17 does not agree. The result forβ = 15
does not agree either, but this is not shown to keep the figure legible. Notice the increase in the
speed-up effect and an additional dynamical beat. Compare with figure 1.

are added and then squared, the one-hop amplitude causes the resulting curve to decay more
rapidly neart = 0, the speed-up effect. At later times the contribution from the two-hop
processes helps produce the local maximum near timet = 1.5τ seen in figure 1. The exact
result must be computed by considering all such ‘paths’.

3.1.2. Processes with recoil.Now consider the processes that occurwith recoil in the
source and absorber. If the source emits radiation, and in the process recoils, the radiation
will not be in resonance with the absorber nuclei. There is an amplitude for such radiation
to reach the detector. This process is distinguishable from the other processes discussed, so
one only needs to consider its intensity. That intensity is given by (13) ((A28))

I(1−f )source(t ′) = (1− f )0r
2h̄

e−(0/h̄)t
′

(13)

where (1− f ) is the recoil fraction. This term, along with the recoil-free term, has been
used when analysing TDMS data as discussed by Hamermesh [3].

There are other terms normally not considered when analysing TDMS data. These
other processes are ones in which the recoil processes occur in the absorber. The source
nucleus emits recoil-free radiation and as a result any absorber nucleus can absorb and re-
emit the radiation recoil free or with recoil. Recoil-free radiation ‘hops’ along through the
absorber but finally one nucleus may emit radiation with recoil. Given an absorber of some
thickness, i.e. having an effective number of nucleiN , we must consider each absorber
nucleus separately. ConsiderN to represent an effective number of ‘absorber’ layers. Start
with the ‘nucleus’ or ‘layer’ closest to the source nucleus and then consider each layer out
to the farthest or last one. In evaluating the contribution from each ‘absorber’ layer, one
must include all ‘paths’ that lead toexcitation of that particular ‘nucleus’ or ‘layer’. The
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Figure 3. The ‘amplitudes’ (see the text for explanation) for the no-hop (solid line), one-hop
(longer-dashed line), and two-hop (shorter-dashed line) multiple-scattering processes are shown
multiplied by the decaying exponential. The case chosen is forN = 50. Notice that the one-hop
amplitude is negative, while the no-hop and two-hop amplitudes are both positive. For coherent
processes one must add amplitudes before squaring to obtain an intensity.

result for the total contribution of incoherent radiation from the source and all layers is
given by (A33),

I(1−f )(t ′) = I(1−f )source(t ′)+
N∑
n=1

|ψnk′(t ′)|2 (14)

wherek′ is the wave number for a photon from the ‘absorber’. Evaluatingψnk′(t
′) for the

condition when the source and absorber nuclei are in exact resonance gives (A34)

ψnk′(t
′) =

√
(1− f )0r

2h̄
e−i(ω0−i(0/2h̄))t ′

n−1∑
m=0

(
n− 1
m

)(
f0rt

′

2h̄

)m+1
(−1)m+1

(m+ 1)!
. (15)

The first term in (14) is just the intensity from the recoiling source nucleus itself, while the
terms in the summation are due to emission with recoil from different ‘absorber’ layers.
For example forn = 1 the calculation gives the contribution to the intensity from the
‘first’ absorber ‘nucleus’ or ‘layer’. This layer absorbs recoil-free radiation from the source
nucleus and then recoils, emitting radiation. This can only happen one way. On the other
hand, consider the tenth-farthest layer from the source nucleus. There are many ways in
which recoil-free radiation from the source nucleus can ‘hop’ along recoillessly to arrive at
this ‘nucleus’ or ‘layer’. The amplitudes for these processes are given by (15).

Using the parameters for the first excited state of57Fe some results are shown in figure 4
for those processes in which emission with recoil occurs from nuclei (or layers)in the
absorber. Figure 4 could be taken to represent the case when the detector is placed in a
non-forward position and the direct radiation from the source is shielded from reaching the
detector. (In figure 4 the prompt Rayleigh contribution is ignored.) In figure 4(a) three
curves are given that are labelled by the location ‘n’ of each absorber layer. Son = 1
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corresponds to the ‘first’ absorber layer, i.e. closest to the source, whilen = 10 corresponds
to the tenth absorber layer farther ‘downstream’. Notice these contributions occur after
t = 0. Because of the 180◦ phase change in each hop, there is a cancellation (speed-up)
effect for layers downstream from the source. Figure 4(b) gives the total contribution from
all the layers in the absorber assuming each ‘n’ layer contribution is weighted equally and
the detector is shielded from the direct source radiation. (In general it is not strictly true
that each contribution should be added equally. Such radiation must, in general, traverse
different path lengths in the absorber before reaching the detector.) Such a time-dependent
intensity should be verifiable by placing the detector in a non-forward position.

Figure 4. Calculated results for the processes in which there is emission of radiation, with
recoil from resonant57Fe nuclei in the ‘absorber’. (a) Three contributions to the total. The
solid curve is for the ‘first’ layer (nucleusn = 1), the long-dashed curve is for the ‘tenth’ layer
(nucleusn = 10), and the shorter-dashed curve is for the ‘last’ layer (nucleus) assuming the
total effective number of resonant nuclei (layers) isN = 20. (b) The total contribution to the
time-dependent intensity from all layers (nuclei) in the absorber which decay with recoil.

3.1.3. Processes involving the inelastic channel.Next consider the inelastic channel. That
is, instead of detecting the gamma ray, detect the conversion electron or, perhaps more
practically, the resulting x-ray. The processes that need to be considered are those in
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which the source emits radiation without recoil and this radiation reaches thenth absorber
nucleus where the radiation is absorbed but the decay takes place by internal conversion.
This process is incoherent with the same process occurring at thepth absorber nucleus.
All such processes ending in internal conversion are incoherent since these ‘paths’ are
distinguishable. In order to calculate the amplitude for such a process one must consider all
the indistinguishable paths that lead to excitation of thenth absorber nucleus. Notice that
in the prior calculation, involving an absorber nucleus emitting radiation with recoil, the
form of the process is essentially identical to that treated in this case. So now it is easy to
treat the inelastic channel. One simply needs to incorporate the conversion-electron channel
width (0c) into the analogous equations above, and remove the factor (1− f ).

The time-dependent intensity due to the inelastic channel processes in the absorber is
(A38)

I(ie)(t
′) =

N∑
n=1

|ψn(ie)(t ′)|2 (16)

where the ‘n’ corresponds to thenth nucleus in the ‘absorber’ in exactly the same fashion as
for the processes with recoil discussed above. Evaluatingψn(ie)(t

′) for the condition when
the source and absorber nuclei are in exact resonance gives (A39)

ψn(ie)(t
′) =

√
0c

2h̄
e−i(ω0−i(0/2h̄))t ′

n−1∑
m=0

(
n− 1
m

)(
f0rt

′

2h̄

)m+1
(−1)m+1

(m+ 1)!
. (17)

This result is nearly identical to (15). In an actual comparison with experiment additional
care is required here because, for each internal-conversion process, the emitted conversion
electron or x-ray must pass through the rest of the absorber to reach the detector. Each ‘n’
contribution must be weighted properly. In detecting the conversion electron itself this is
particularly important since a conversion electron usually cannot travel far in the sample. As
in ordinary conversion-electron M̈ossbauer spectroscopy, one would observe only a surface
layer effect.

4. Application of the theory

The model contains several physical parameters: the lifetime of the nuclear-resonant level,
and the radiative and conversion-electron widths of that level. There is an additional
parameterN , the effective number of resonant absorber nuclei, representing the absorber
thickness. If the theory is to be useful, this effective number of nuclei (or layers)N in
the ‘absorber’ must be related to the actual resonant thickness parameter of the sample.
As seen in figures 1 and 2 the one-dimensional model and the classical optical model
give identical results. Noting this observation, one can determine the relationship (see the
acknowledgments) betweenN in the one-dimensional model andβ in the classical optical
model. To do this consider the thin-absorber limit. In the classical optical model, when the
source and absorber are in resonance, this amounts to expanding theJ0 Bessel function. In
the one-dimensional model the thin ‘absorber’ limit is set by puttingN = 1. Comparing
the results gives

N = β0

2f0r
(18)

where all the terms have been previously defined. OnceN is determined for a given sample,
all processes can be calculated.
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Consider the analysis of TDMS data using both the classical optical and one-dimensional
models. In the classical optical model calculation [3] one simply gives weights to
two components: the recoil-free component, exhibiting speed-up, and a normal lifetime
component due to recoil events in the source. The component that may be missing is due
to recoil processes that take place in theabsorber itself. This component can be accounted
for in the one-dimensional model. Notice from figure 4 that the effect occurs at times well
after t = 0. (This is not true for nuclear-resonant scattering using synchrotron radiation.
The incoherent scattering in non-forward directions is evident [10].)

Furthermore, and most importantly, the size of this contribution in TDMS depends
strongly on the geometry of the experimental configuration. In order to make some
comparison, figure 5 gives simulations of TDMS results using both types of calculation
and two different geometrical configurations. The absorber has a nuclear-resonant thickness
β = 3.2 (N = 20). The coherent forward scattering goes forward but the incoherent
scattering goes into all 4π steradians. The relative contribution from the incoherent
scattering depends on the solid angle subtended by the detector relative to the source
and absorber. In figure 5(a) the solid angle subtended by the detector relative to the
source is�source = 0.2 steradians and relative to the absorber�absorber = 2π steradians.
The difference between the predictions of the two models is large in such a case. For
figure 5(b) the solid angles are�source = 0.004 steradians and�absorber = 0.4 steradians.
The difference now is quite small.

5. Summary

Dr Stan Ruby has, for many years, been advocating the idea of tracing multiple-scattering
paths. He gave a discussion of his ideas atICAME’93. The present paper is a step in
that direction. A one-dimensional model for nuclear-resonant forward scattering of gamma
radiation is developed which gives a unified physical picture of the scattering processes
involved in time-domain nuclear-resonant spectroscopy. For the recoil-free processes the
model gives a result identical to that obtained using the classical optical model. One simply
needs to establish the relationship between the effective number of resonant nucleiN in
the model and the resonant thickness parameterβ used in the classical optical model (see
(18)). The calculations using this new model are not difficult and the physical picture of the
processes is clear. The model shows that the speed-up effect is a consequence of the 180◦

phase shift that occurs for each recoil-free scattering (hopping) event. Dynamical beats, the
additional bumps that appear in time-domain spectra when using a thick sample, are also
due to this same interference effect. In this case the double-scattering (two-hop) processes
dominate the single-scattering (one-hop) processes at later times.

In TDMS the contribution of the incoherent scattering in the absorber is usually small.
However, the first observation of incoherent scattering using synchrotron radiation [10]
showed obvious speed-up effects. Furthermore, in order to interpret the results of [10]
using the classical optical model, the authors were forced to divide the sample into layers
to obtain an averaged speed-up component which was then added to a normal lifetime
component. Similar synchrotron radiation calculations and discussion have been performed
by others [11–13]. The one-dimensional model is able to handle the incoherent processes
as a natural extension.

During the past ten years there have been interesting extensions of the TDMS method.
These include time chopping [14] and phase modulation (gamma echo) [15, 16] of the source
beam. These techniques can be analysed using the one-dimensional model but this will be
done in a later paper.
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Figure 5. A calculated comparison of TDMS spectra using the one-dimensional model (the
solid curves) and the classical optical model (the dashed curves) neglecting the electronic
time resolution of an actual experimental apparatus. These calculations are for the57Fe
case assuming an effective number of resonant nucleiN = 20 for the one-dimensional
model, and the correspondingβ = 3.2 for the classical optical model. (a) The solid angle
subtended by the detector relative to the source is�source = 0.2 steradians and relative to the
absorber�absorber = 2π steradians. (b) The solid angles are�source = 0.004 steradians and
�absorber = 0.4 steradians.

The source–matter (source–absorber) system has a unique feature in which there is
complete phase memory when considering nuclear-resonant recoil-free scattering processes.
The result is completely independent of the wavelength of the radiation assuming only
the resonance condition. Furthermore the positions and spacings between theN effective
nuclei do not enter the result, so questions such as raised by Dicke [17] when discussing
superradiance are irrelevant for the recoil-free processes.

Consider a radioactive source which contains resonant nuclei in the ground state. In
such a case the nuclear excitation may ‘wander’. The excitation that was originally on one
nucleus may spread out over many nuclei. The ‘speed-up’ effect is due to this collective
behaviour [18, 19]. Thus it appears that the radiative transition rate has been enhanced.
Does this mean, for example, that under certain conditions the cross section for stimulated
emission can be larger than that normally assumed?
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Appendix

Starting from (6)–(10), solve (9) forDp(ω) and substitute into (6); the summation overp
can be converted into an integral which can be evaluated according to the usual prescription∑

p

A(ω)|Hp|2
(ω − ωp + iε)h̄2 ⇒

L

2πh̄

∫
dp

A(ω)|Hp|2
(ω − ωp + iε)h̄2 (A1)

using the symbolic relation

1

(x − a)∓ iε
= P 1

(x − a) ± iπδ(x − a) (A2)

whereP indicates the principal value. The principal value part of the integral gives rise to
an energy shift, which we will neglect, while the imaginary part produces the conversion-
electron width. The result is(

ω − ω0+ i
0c

2h̄

)
A(ω) = 1+

∑
k

Bk(ω)Hk

h̄
. (A3)

Solving (10) forEmp(ω) and substituting into (8) gives, after using the same procedure,(
ω − ω′0+ i

0c

2h̄

)
Cm(ω) =

∑
k

Bk(ω)Hk

h̄
eikxm (A4)

again neglecting the frequency shift. Solving (7) forBk(ω) and substituting into (A4) gives(
ω − ω′0+ i

0c

2h̄

)
Cm(ω) = A(ω)

h̄2

∑
k

|Hk|2 eikxm

(ω − ωk + iε)
+
∑
m′

Cm′(ω)

h̄2

∑
k

|Hk|2 eik(xm−xm′ )

(ω − ωk + iε)
.

(A5)

Converting the sums onk to integrals and evaluating the integrals in the same manner as
described above gives(
ω − ω′0+ i

0

2h̄

)
Cm(ω) = −i

0r

2h̄
ei(ω/c)xmA(ω)− i

0r

2h̄

m−1∑
m′=1

Cm′ e
i(ω/c)(xm−xm′ )2(xm − xm′)

(A6)

where0r is the radiative width,0 (the total width) = 0r + 0c and2(x) is the Heaviside
step function defined to be zero when the argument is less than zero and one when it is
greater than or equal to zero. Using an iteration procedure it is not difficult to show that

Cm(ω) = −i
0r

2h̄

ei(ω/c)xmA(ω)

(ω − ω′0+ i(0/2h̄))

[
1− i

0r

2h̄

1

(ω − ω′0+ i(0/2h̄))

]m−1

. (A7)
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Substituting the expression forCm(ω) into (7), one can findBk(ω)

Bk(ω) = H ∗k
h̄

1

(ω − ω0+ i(0/2h̄))(ω − ωk + iε)

[
1+

N−1∑
m=0

ei((ω/c)−k)xm+1α(1+ α)m
]

(A8)

where

α = −i
0r

2h̄

1

(ω − ω′0+ i(0/2h̄))
. (A9)

Before taking the Fourier transform, one can expressBk(ω) in a symbolic form according
to (A8).

Bk = Bsourcek +
N−1∑
m=0

Babsorberk,m . (A10)

The first term is due to the source alone while the summation term describes the effect due
to each absorber nucleus according to the value ofm, which not only labels the location of
that particular absorber nucleus, but also includes the effects of other absorber nuclei that
are positioned ‘in front’ of the one located atx = xm. In this context, ‘in front’ means
that the source radiation passes those nuclei before reaching the one located atx = xm.
Now take the Fourier transform ofBk(ω) to obtainbk(t) according to (3). Representing the
radiation as a plane wave allows one to write

ψr(x, t) =
∑
k

ei(kx−ωkt)
√
L

bk(t) =
√
L

2π

∫ ∞
−∞

dk ei(kx−ωkt)bk(t). (A11)

The plane wave due to the source alone is

ψsource
r (t) = −i

√
L
H ∗k
h̄c

e−i(ω0−i(0/2h̄)(t−(x/c)2
(
t − x

c

)
2(x). (A12)

These step functions indicate that if the detector is located atx, there must be sufficient
time elapsed in order for the radiation to reach the detector. The other terms in (A10) are
more complicated and related to the effect due to the absorber nuclei. The general term in
the Fourier transform looks like

bk,m(t) = − 1

2π i

H ∗k
h̄

∫ ∞
−∞

dω ei(ωk−ω)t ei((ω/c)−k)xm+1
α(1+ α)m

(ω − ω0+ i(0/2h̄))(ω − ωk + iε)
(A13)

whereα is defined above. It turns out that the only pole in this integral that contributes to
the final answer is the one whereω = ωk − iε. This condition arises because the detector
position atx must be greater than the position of the last absorber nucleus. Notice that the
positions of the absorber nuclei do not appear in the answer. This can be seen, physically,
by noting that the path from the source to the detector is fixed so the specific locations of
the absorbing nuclei are irrelevant: the only thing that is important is how many nuclei are
encountered in a given process. Evaluating the general term gives

bk,m(t) = H ∗k
h̄

(
−i
0r

2h̄

)
1

(ωk − ω0+ i(0/2h̄))(ωk − ω′0+ i(0/2h̄))

m∑
n=0

(
m

n

)
αn(ωk)

(A14)

where now

α(ωk) = −i
0r

2h̄

1

(ωk − ω′0+ i(0/2h̄))
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and the factorm overn is the binomial coefficient. Grouping anotherα(ωk) factor, one can
write

bk,m(t) = H ∗k
h̄

1

(ωk − ω0+ i(0/2h̄))

m∑
n=0

(
m

n

)
αn+1(ωk). (A15)

Thus,

bk(t) = bsourcek (t)+
N−1∑
m=0

bk,m(t). (A16)

Next, one needs to calculate the plane-wave amplitude according to the prescription used
above. (It is at this point where the terms omitted in the solution of (A13) do not contribute.)
One can identify terms in an obvious fashion

ψr(t) = ψsource
r (t)+

N−1∑
m=0

m∑
n=0

ψ(n)
r,m(t). (A17)

The general term that needs evaluation is

ψ(n)
r,m(t) =

√
L

2π

H ∗k
h̄c

∫ ∞
−∞

dωk
e−iωk(t−(x/c))

(ωk − ω0+ i(0/2h̄))

(
m

n

)
αn+1(ωk). (A18)

As one works through the details an interesting and physically meaningful pattern develops.
If one re-expresses the result in terms of amplitudes depending on how many absorber
nuclei participate in a particular process, the following form emerges:

ψr(t
′) = ψsource

r (t ′)+Na1(t)+
(
N

2

)
a2(t

′)+
(
N

3

)
a3(t

′)+ · · · +
(
N

N

)
aN(t

′) (A19)

where forn = 1

a1(t
′) = −i

√
L
H ∗k
h̄c

e−i(ω0−i(0/2h̄))t ′
(
− i
0r

2h̄

)[
1− e−i(ω′0−ω0)t

′

(ω0− ω′0)
]

(A20)

and forn = 2, 3, . . . , N

an(t
′) = −i

√
L
H ∗k
h̄c

e−i(ω0−i(0/2h̄))t ′
(
−i
0r

2h̄

)n
×
[(

1− e−i(ω′0−ω0)t
′ − e−i(ω′0−ω0)t

′
n−1∑
p=1

(−it ′)p(ω0− ω′0)p
p!

)
(ω0− ω′0)−n

]
.

(A21)

If one evaluates these expressionson resonance, i.e., whenω0 equalsω′0, the total amplitude
takes on the following simple form:

ψr(t
′) = ψsource

r (t ′)
[

1+
N∑
n=1

(
N

n

)(
−0rt

′

2h̄

)n 1

n!

]
(A22)

and the intensity reaching the detector as a function of time is

Ir(t
′) = c|ψr(t ′)|2. (A23)
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A.1. Recoil-free processes

I can immediately write down the result for the completely recoil-free process as

ψfr(t
′) =

√
f0r

2h̄
e−i(ω0−i(0/2)h̄)t ′

[
1+

N∑
n=1

(
N

n

)
afn(t

′)
]

(A24)

where forn = l

af 1(t
′) =

√
f0r

2h̄
e−i(ω0−i(0/2)h̄)t ′

(
− i
f0r

2h̄

)[
1− e−i(ω′0−ω0)t

′

(ω0− ω′0)
]
. (A25)

and forn = 2, 3, . . . , N

afn(t
′) =

√
f0r

2h̄
e−i(ω0−i(0/2)h̄)t ′

(
−i
f0r

2h̄

)n
×
[(

1− e−i(ω′0−ω0)t
′ − e−i(ω′0−ω0)t

′
n−1∑
p=1

(−it ′)p(ω0− ω′0)p
p!

)
(ω0− ω′0)−n

]
.

(A26)

The time-dependent intensity of radiation reaching the detector when the source nucleus
and absorber nuclei are in resonance, and one considers only the recoil-free processes, is

If r (t
′) = f0r

2h̄
e−(0/h̄)t

′
[

1+
N∑
n=1

(
N

n

)(−f0rt ′
2h̄

)n 1

n!

]2

. (A27)

A.2. Processes with recoil

There is an amplitude for the source to emit radiation with recoil and the resulting radiation
to reach the detector. This process is incoherent with the other processes discussed, so
compute its intensity.

I(1−f )source(t ′) = (1− f )0r
2h̄

e−(0/h̄)t
′
. (A28)

Furthermore, any absorber nucleus can absorb radiation without recoil and then emit
radiation with recoil. To calculate this amplitude one must consider all the processes that
lead to excitation of that particular absorber nucleus which can then emit with recoil. In
order to do this I add a sixth amplitude to the set of equations (6)–(10)

(ω − ωk′ + iε)Fmk′(ω) = Cm(ω)H
∗
k′ e
−ikxm

h̄
(A29)

whereH ∗k′ corresponds to the operator for emission with recoil. Proceeding in the same
fashion as above one arrives at the following amplitude for the process resulting in emission
with recoil from thenth absorber nucleus,

ψnk′(t
′) =

n−1∑
m=0

(
n− 1
m

)
a(1−f )m+1(t

′) (A30)

where forn = 1

a(1−f )1(t ′) =
√
(1− f )0r

2h̄
e−i(ω0−i(0/2)h̄)t ′

(
− i f 0r

2h̄

)[
1− e−i(ω′0−ω0)t

′

(ω0− ω′0)
]
. (A31)
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and forn = 2, 3, . . . , N

a(1−f )n(t ′) =
√
(1− f )0r

2h̄
e−i(ω0−i(0/2)h̄)t ′

(
−i
f0r

2h̄

)n
×
[(

1− e−i(ω′0−ω0)t
′ − e−i(ω′0−ω0)t

′
n−1∑
p=1

(−it)p(ω0− ω′0)p
p!

)
(ω0− ω′0)−n

]
.

(A32)

Since these recoil processes are incoherent with each other and with the recoil-free processes,
i.e. they correspond to distinguishable ‘paths’, the intensity for each process must be
calculated separately. Thus, the final intensity for the processes with recoil is

I(1−f )(t ′) = I(1−f )source(t ′)+
N∑
n=1

|ψnk′(t ′)|2. (A33)

Evaluatingψnk′(t ′) for the condition when the source and absorber are in exact resonance
gives

ψnk′(t
′) =

√
(1− f )0r

2h̄
e−i(ω0−i(0/2)h̄)t ′

n−1∑
m=0

(
n− 1
m

)(
f0rt

′

2h̄

)m+1
(−1)m+1

(m+ 1)!
. (A34)

A.3. Processes involving the inelastic channel

The processes that need to be considered are those in which the source emits radiation
without recoil and this radiation reaches themth absorber nucleus where the radiation is
absorbed without recoil but the decay takes place by internal conversion. All such processes
are incoherent. To calculate these amplitudes consider all the indistinguishable paths that
lead to excitation of themth absorber nucleus. One needs to incorporate the conversion-
electron channel width into the analogous equations from the recoil case above and remove
the factor (1− f ). This gives

ψn(ie)(t
′) =

n−1∑
m=0

(
n− 1
m

)
a(ie)m+1(t

′) (A35)

where forn = 1

a(ie)1(t
′) =

√
0c

2h̄
e−i(ω0−i(0/2)h̄)t ′

(
−i
f0r

2h̄

)[
1− e−i(ω′0−ω0)t

′

(ω0− ω′0)

]
(A36)

and forn = 2, 3, . . . , N

a(ie)n(t
′) =

√
0c

2h̄
e−i(ω0−i(0/2)h̄)t ′

(
−i
f0r

2h̄

)n
×
[(

1− e−i(ω′0−ω0)t
′ − e−i(ω′0−ω0)t

′
n−1∑
p=1

(−it ′)p(ω0− ω′0)p
p!

)
(ω0− ω′0)−n

]
.

(A37)

These inelastic channel processes are incoherent with each other so the final intensity for
the inelastic channel processes is

I(ie)(t
′) =

N∑
n=1

|ψn(ie)(t ′)|2. (A38)
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Evaluatingψn(ie)(t ′) for the condition when the source and absorber are in exact resonance
gives

ψn(ie)(t
′) =

√
0c

2h̄
e−i(ω0−i(0/2)h̄)t ′

n−1∑
m=0

(
n− 1
m

)(
f0rt

′

2h̄

)m+1
(−1)m+1

(m+ 1)!
. (A39)
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